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Definition 0.1. Let XY be topological spaces and let f: X — Y. We say that f is locally
constant if for every x € X, there exists a neighborhood U, such that f|y, is a constant
function.

Lemma 0.2 (for Exercise 3-1). Let f : X — Y be a locally constant function and X a
connected space. Then f is constant on X.

Proof. For each x € X, let U, be an open neighborhood of = such that f is constant on U,.
Pick some y € f(X), and set

U= {0, : f(z) = v}
V=it f(@) £ )

Then both U,V are unions of open sets, so they are open. We also know that U UV = X
and UNV = 0. Since y € f(X), U must be non-empty. Thus since X is connected, V'
must be empty (since we cannot write X as a disjoint union of non-empty open sets). Thus
U= X, so fis constant on X. n

Corollary 0.3 (for Exercise 3-1). Let f : X — Y be a locally constant function. Then f is
constant on each connected component of X.

Proof. Let A be a connected component of X. Then f|4 : A — Y is locally constant and A
is connected, so f|4 is constant by the above lemma. O

Proposition 0.4 (Exercise 3-1). Let M, N be smooth manifolds, and let F' : M — N be
smooth. Then F is constant on each component of M if and only if dF), : T,M — TrqN is
the zero map.

Proof. First suppose that I is constant on each component of M. Let p € M,v € T,M, f €
C>=(M). Let U, be the component of M containing p. Then fo F' and f o F|y, agree on U,
so fo Fly, is constant. Thus

dFp(0)(f) = v(f o F) =v(fo Fly,) =0



using Proposition 3.8 and Lemma 3.4a. Thus dF,(v) is the zero function for each v € T,M,
so dF), is the zero map. Since p is arbitrary, this holds on each component of M.
Now suppose that dF}, is the zero map. Let p € M, and let (U, ¢) be a chart for M with

p € U and let (V,4) be a chart for N with F(p) C V. Let F' =1 o Fo¢~! be the coordinate
representation of F' and let p = ¢(p). Since dF,(v) = 0 for all v € T, M, we have
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is a basis for T, N, it must be that each coefficient

F(p)

and since
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Ox’
this holds for all p € U, so for all p € ¢(U). So our coordinate representation F is a function
between Euclidean spaces with all partial derivatives vanishing on ¢(U), so we know from
calculus that F is constant on ¢(U). Thus F is constant on U. Since p € M is arbitrary,
F is locally constant on M. Thus F' is constant on each component of M by the previous
corollary. O]

(p) is zero. Since p is arbitrary in U,

Lemma 0.5 (for Exercise 3-2). A function has a right inverse if and only if it is surjective.
(Note: This depends on the Aziom of Choice.)

Proposition 0.6 (Exercise 3-2). Let My, ... M be smooth manifolds. For j = 1,...k let
m; My x ... X My be the projection (p1,...px) — p;. Then define

a:T,(My x...x My) =T, My & ...0T,, M
a(v) = (d(m)p(v), . .., d(m)p(v))

The map « is an isomorphism. Furthermore, if one of the M; is a smooth manifold with
boundary, then o still an isomorphism.

Proof. First we show that « is linear. Using the fact that d(my), is linear (Proposition 3.6a),
we get

a(av + bw) = (d(m),(av + bw), . .. d(mg)p(av + bw))
m1)p(v) + bd(m1)p(w), . . ad(my)p(v) + bd(my)p(w))

= a(d(m)y(0), - () 0)) + WAy (), .- Ay (1)
= aa(v) + ba(w)
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so « is linear. We will show that « is invertible by exhibiting an inverse. First define

LZ'ZMZ‘—>(M1 X...XMk)
ti(x) = (p1,p2, - @, ... pr)



where x is in the ith index. Now define

B:Tlel@---EBTpkMk%Tp(Ml X ... X Mk)
k
Bor, ... vk) = d(ts)p, (v3)
i=1
Note that

mj o 1i(pi) = m(p) = pj

So 7; o ; is the identity on M; when ¢ = j and a constant map when ¢ # j. By Proposition
3.6(b), we have

d(m;)pd(Li)p, = d(mj 0 ti)p,

Let (vi,...v;) € @F | T,,M;. Then

aof(vy,...vp) = (Z d(ei)y, (Uz‘)) = a(d(w)y, (v:)

=1 i=1
For each i,

a(d(ti)p; (vi)) = (d(m1)pd(2i)p, (Vi) - - - d(Tr)pd(ti)p, (Vi)
= (d(m1 0 t3)p, (Vi) - .. (T, © i), (v3))
As noted previously, 7; o ¢y, is either the identity map (when ¢ = j) or a constant map. As

shown in Exercise 1, the differential of a constant map is zero, and using Proposition 3.6(c)
we get

a(d(ear,)p; (vi)) = (0,..., Idg, ar, (vi), .-, 0) = (0,...,v5,...,0)

Returning to the computation of a o 3, we get
aoB(vr,...,v) =D (0,...v5,...,0) = (vr,...,v)

hence avo 3 is the identity on @le T,,M;. Thus o has a right inverse, so it is surjective. Note
that T,(M; x ...x Mj) has dimension equal to the sum of the dimensions of the M;, which is
also equal to the dimension of @ ,T,. M;. Thus « is a surjective map between vector spaces
of the same dimension, so it is a bijection. Thus « is an isomorphism. O

Proposition 0.7 (Exercise 3-6). Consider S® as the unit sphere in C? under the usual
identification C* <+ RY. For each z = (21,2) € S3, define a curve v, : R — S3 by
7. (t) = (€"21,e"2y). Then v, is a smooth curve whose velocity is never zero.



Proof. (Throughout, we refrain from using 7 as an index, and only use it to refer to the
imaginary unit.) Let m,m : C2 — C be the projections (21, 23) + 21 and (21, 22) = 2o.
Considering 7, as a curve into C?, we note that the compositions

movy,:R—C 71 0 7, (¢) = ez

mo~y,:R—C Ty 0 7,(t) = €2,

are each smooth in the standard analytic sense, so by Proposition 2.12 (of Lee), . is smooth.
Now we compute the velocity of v, at t;. First note that

dv} 4 4
;: (to) = ze”zl‘t:to = je'loy
dv? 4 4

Then we compute the velocity as

pooy s %
v.(to) = 7 (to) Ok

7v=(to)

- 0
= (z'e”o) e
Rl I

We know that e’ = 0 for any ¢, € R. Since is a basis for T, ;,)S®, we have

_0_ ‘
ok Yz (t())

< Vk,z, =0
’YZ(tO)

OZZk

Dk

Since (21, 29) € 53, we can’t have z; = 0 or z5 = 0. Thus 7.(¢,) is never zero. O



