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Definition 0.1. Let X, Y be topological spaces and let f : X → Y . We say that f is locally
constant if for every x ∈ X, there exists a neighborhood Ux such that f |Ux is a constant
function.

Lemma 0.2 (for Exercise 3-1). Let f : X → Y be a locally constant function and X a
connected space. Then f is constant on X.

Proof. For each x ∈ X, let Ux be an open neighborhood of x such that f is constant on Ux.
Pick some y ∈ f(X), and set

U =
⋃
{Ux : f(x) = y}

V =
⋃
{Ux : f(x) 6= y}

Then both U, V are unions of open sets, so they are open. We also know that U ∪ V = X
and U ∩ V = ∅. Since y ∈ f(X), U must be non-empty. Thus since X is connected, V
must be empty (since we cannot write X as a disjoint union of non-empty open sets). Thus
U = X, so f is constant on X.

Corollary 0.3 (for Exercise 3-1). Let f : X → Y be a locally constant function. Then f is
constant on each connected component of X.

Proof. Let A be a connected component of X. Then f |A : A→ Y is locally constant and A
is connected, so f |A is constant by the above lemma.

Proposition 0.4 (Exercise 3-1). Let M,N be smooth manifolds, and let F : M → N be
smooth. Then F is constant on each component of M if and only if dFp : TpM → TF (p)N is
the zero map.

Proof. First suppose that F is constant on each component of M . Let p ∈M, v ∈ TpM, f ∈
C∞(M). Let Up be the component of M containing p. Then f ◦F and f ◦F |Up agree on Up,
so f ◦ F |Up is constant. Thus

dFp(v)(f) = v(f ◦ F ) = v(f ◦ F |Up) = 0
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using Proposition 3.8 and Lemma 3.4a. Thus dFp(v) is the zero function for each v ∈ TpM ,
so dFp is the zero map. Since p is arbitrary, this holds on each component of M .

Now suppose that dFp is the zero map. Let p ∈M , and let (U, φ) be a chart for M with

p ∈ U and let (V, ψ) be a chart for N with F (p) ⊂ V . Let F̂ = ψ ◦F ◦φ−1 be the coordinate
representation of F and let p̂ = φ(p). Since dFp(v) = 0 for all v ∈ TpM , we have

0 = dFp

(
∂

∂xi

∣∣∣∣
p

)
=
∂F̂

∂xi
(p̂)

∂

∂yj

∣∣∣∣
F (p)

and since {
∂

∂yj

∣∣∣∣
F (p)

}

is a basis for TF (p)N , it must be that each coefficient ∂F̂
∂xi

(p̂) is zero. Since p is arbitrary in U ,

this holds for all p ∈ U , so for all p̂ ∈ φ(U). So our coordinate representation F̂ is a function
between Euclidean spaces with all partial derivatives vanishing on φ(U), so we know from

calculus that F̂ is constant on φ(U). Thus F is constant on U . Since p ∈ M is arbitrary,
F is locally constant on M . Thus F is constant on each component of M by the previous
corollary.

Lemma 0.5 (for Exercise 3-2). A function has a right inverse if and only if it is surjective.
(Note: This depends on the Axiom of Choice.)

Proposition 0.6 (Exercise 3-2). Let M1, . . .Mk be smooth manifolds. For j = 1, . . . k let
πj : M1 × . . .×Mk be the projection (p1, . . . pk) 7→ pj. Then define

α : Tp(M1 × . . .×Mk)→ Tp1M1 ⊕ . . .⊕ TpkMk

α(v) = (d(π1)p(v), . . . , d(πk)p(v))

The map α is an isomorphism. Furthermore, if one of the Mi is a smooth manifold with
boundary, then α still an isomorphism.

Proof. First we show that α is linear. Using the fact that d(πk)p is linear (Proposition 3.6a),
we get

α(av + bw) = (d(π1)p(av + bw), . . . d(πk)p(av + bw))

= (ad(π1)p(v) + bd(π1)p(w), . . . ad(πk)p(v) + bd(πk)p(w))

= a(d(π1)p(v), . . . , d(πk)p(v)) + b(d(π1)p(w), . . . , d(πk)p(w))

= aα(v) + bα(w)

so α is linear. We will show that α is invertible by exhibiting an inverse. First define

ιi : Mi → (M1 × . . .×Mk)

ιi(x) = (p1, p2, . . . x, . . . pk)
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where x is in the ith index. Now define

β : Tp1M1 ⊕ . . .⊕ TpkMk → Tp(M1 × . . .×Mk)

β(v1, . . . vk) =
k∑
i=1

d(ιi)pi(vi)

Note that

πj ◦ ιi(pi) = πj(p) = pj

So πj ◦ ιi is the identity on Mi when i = j and a constant map when i 6= j. By Proposition
3.6(b), we have

d(πj)pd(ιi)pi = d(πj ◦ ιi)pi

Let (v1, . . . vk) ∈
⊕k

i=1 TpiMi. Then

α ◦ β(v1, . . . vk) = α

(
k∑
i=1

d(ιi)pi(vi)

)
=

k∑
i=1

α(d(ιi)pi(vi))

For each i,

α(d(ιi)pi(vi)) = (d(π1)pd(ιi)pi(vi), . . . d(πk)pd(ιi)pi(vi))

= (d(π1 ◦ ιi)pi(vi), . . . d(πk ◦ ιi)pi(vi))

As noted previously, πj ◦ ιMi
is either the identity map (when i = j) or a constant map. As

shown in Exercise 1, the differential of a constant map is zero, and using Proposition 3.6(c)
we get

α(d(ιMi
)pi(vi)) = (0, . . . , IdTpiMi

(vi), . . . , 0) = (0, . . . , vi, . . . , 0)

Returning to the computation of α ◦ β, we get

α ◦ β(v1, . . . , vk) =
k∑
i=1

(0, . . . vi, . . . , 0) = (v1, . . . , vk)

hence α◦β is the identity on
⊕k

i=1 TpiMi. Thus α has a right inverse, so it is surjective. Note
that Tp(M1× . . .×Mk) has dimension equal to the sum of the dimensions of the Mi, which is
also equal to the dimension of ⊕ki=1TpiMi. Thus α is a surjective map between vector spaces
of the same dimension, so it is a bijection. Thus α is an isomorphism.

Proposition 0.7 (Exercise 3-6). Consider S3 as the unit sphere in C2 under the usual
identification C2 ↔ R4. For each z = (z1, z2) ∈ S3, define a curve γz : R → S3 by
γz(t) = (eitz1, e

itz2). Then γz is a smooth curve whose velocity is never zero.
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Proof. (Throughout, we refrain from using i as an index, and only use it to refer to the
imaginary unit.) Let π1, π2 : C2 → C be the projections (z1, z2) 7→ z1 and (z1, z2) 7→ z2.
Considering γz as a curve into C2, we note that the compositions

π1 ◦ γz : R→ C π1 ◦ γz(t) = eitz1

π2 ◦ γz : R→ C π2 ◦ γz(t) = eitz2

are each smooth in the standard analytic sense, so by Proposition 2.12 (of Lee), γz is smooth.
Now we compute the velocity of γz at t0. First note that

dγ1z
dt

(t0) = ieitz1
∣∣
t=t0

= ieit0z1

dγ2z
dt

(t0) = ieitz2
∣∣
t=t0

= ieit0z2

Then we compute the velocity as

γ′z(t0) =
dγkz
dt

(t0)
∂

∂xk

∣∣∣∣
γz(t0)

= (ieit0)

(
zk

∂

∂xk

∣∣∣∣
γz(t0)

)

We know that eit0 6= 0 for any t0 ∈ R. Since ∂
∂xk

∣∣
γz(t0)

is a basis for Tγz(t0)S
3, we have

0 = zk
∂

∂xk

∣∣∣∣
γz(t0)

⇐⇒ ∀k, zk = 0

Since (z1, z2) ∈ S3, we can’t have z1 = 0 or z2 = 0. Thus γ′z(t0) is never zero.
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